Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Three‐Dimensionally Ordered Macroporous Polymeric Materials by Colloidal Crystal Templating for Reversible CO2 Capture

Identifieur interne : 005C17 ( Main/Exploration ); précédent : 005C16; suivant : 005C18

Three‐Dimensionally Ordered Macroporous Polymeric Materials by Colloidal Crystal Templating for Reversible CO2 Capture

Auteurs : Hongkun He [États-Unis] ; Mingjiang Zhong [États-Unis] ; Dominik Konkolewicz [États-Unis] ; Karin Yacatto [États-Unis] ; Timothy Rappold [États-Unis] ; Glenn Sugar [États-Unis] ; Nathaniel E. David [États-Unis] ; Jeff Gelb [États-Unis] ; Naomi Kotwal [États-Unis] ; Arno Merkle [États-Unis] ; Krzysztof Matyjaszewski [États-Unis]

Source :

RBID : ISTEX:0D1D0896344117E278B3B100DE8B1A14C037C97A

Descripteurs français

English descriptors

Abstract

The design and preparation of porous materials with controlled structures and functionalities is crucial to a variety of absorption‐ or separation‐relevant applications, including CO2 capture. Here, novel functional polymeric materials with three‐dimensionally ordered macroporous (3DOM) structures are prepared by using colloidal crystals as templates using relatively simple, rapid, and inexpensive approaches. These ordered structures are used for the reversible CO2 capture from ambient air by humidity swing. Typically, the colloidal crystal template is synthesized from polymer latex particles of poly(methyl methacrylate) (PMMA) or polystyrene (PS). To maintain the functionality of the material, it is important to prevent the porous structure collapsing, which can occur by the hydrolysis of the ester bonds in conventional crosslinkers under basic conditions. This hydrolysis can be prevented by using a water‐soluble crosslinker containing two quaternary ammonium moieties, which can be used to prepare stable porous crosslinked polymers with the monomer (vinylbenzyl)trimethylammonium chloride (VBTMACl) and using a PMMA‐based colloidal crystal template. The hydroxide‐containing monomer and dicationic crosslinker are synthesized from their chloride precursors, avoiding the ion‐exchange step which causes shrinkage of the pores. An analysis of different methods for infiltrating the monomer solution into the colloidal crystal template shows that infiltration using capillary forces leads to fewer defects than infiltration under a partial vacuum. In addition, functional macroporous films with micrometer thickness are prepared from a template of PS‐based colloidal crystals in a thin film. In general, the colloidal crystal templated materials showed improved CO2 absorption/desorption rates and swing sizes compared to a commercially available material with similar functional groups. This work could easily be extended to create a new generation of ordered macroporous polymeric materials with tunable functionalities for other applications.

Url:
DOI: 10.1002/adfm.201300401


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Three‐Dimensionally Ordered Macroporous Polymeric Materials by Colloidal Crystal Templating for Reversible CO2 Capture</title>
<author>
<name sortKey="He, Hongkun" sort="He, Hongkun" uniqKey="He H" first="Hongkun" last="He">Hongkun He</name>
</author>
<author>
<name sortKey="Zhong, Mingjiang" sort="Zhong, Mingjiang" uniqKey="Zhong M" first="Mingjiang" last="Zhong">Mingjiang Zhong</name>
</author>
<author>
<name sortKey="Konkolewicz, Dominik" sort="Konkolewicz, Dominik" uniqKey="Konkolewicz D" first="Dominik" last="Konkolewicz">Dominik Konkolewicz</name>
</author>
<author>
<name sortKey="Yacatto, Karin" sort="Yacatto, Karin" uniqKey="Yacatto K" first="Karin" last="Yacatto">Karin Yacatto</name>
</author>
<author>
<name sortKey="Rappold, Timothy" sort="Rappold, Timothy" uniqKey="Rappold T" first="Timothy" last="Rappold">Timothy Rappold</name>
</author>
<author>
<name sortKey="Sugar, Glenn" sort="Sugar, Glenn" uniqKey="Sugar G" first="Glenn" last="Sugar">Glenn Sugar</name>
</author>
<author>
<name sortKey="David, Nathaniel E" sort="David, Nathaniel E" uniqKey="David N" first="Nathaniel E." last="David">Nathaniel E. David</name>
</author>
<author>
<name sortKey="Gelb, Jeff" sort="Gelb, Jeff" uniqKey="Gelb J" first="Jeff" last="Gelb">Jeff Gelb</name>
</author>
<author>
<name sortKey="Kotwal, Naomi" sort="Kotwal, Naomi" uniqKey="Kotwal N" first="Naomi" last="Kotwal">Naomi Kotwal</name>
</author>
<author>
<name sortKey="Merkle, Arno" sort="Merkle, Arno" uniqKey="Merkle A" first="Arno" last="Merkle">Arno Merkle</name>
</author>
<author>
<name sortKey="Matyjaszewski, Krzysztof" sort="Matyjaszewski, Krzysztof" uniqKey="Matyjaszewski K" first="Krzysztof" last="Matyjaszewski">Krzysztof Matyjaszewski</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0D1D0896344117E278B3B100DE8B1A14C037C97A</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/adfm.201300401</idno>
<idno type="url">https://api.istex.fr/document/0D1D0896344117E278B3B100DE8B1A14C037C97A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000303</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000303</idno>
<idno type="wicri:Area/Istex/Curation">000303</idno>
<idno type="wicri:Area/Istex/Checkpoint">000960</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000960</idno>
<idno type="wicri:doubleKey">1616-301X:2013:He H:three:dimensionally:ordered</idno>
<idno type="wicri:Area/Main/Merge">005F58</idno>
<idno type="wicri:Area/Main/Curation">005C17</idno>
<idno type="wicri:Area/Main/Exploration">005C17</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Three‐Dimensionally Ordered Macroporous Polymeric Materials by Colloidal Crystal Templating for Reversible CO
<hi rend="subscript">2</hi>
Capture</title>
<author>
<name sortKey="He, Hongkun" sort="He, Hongkun" uniqKey="He H" first="Hongkun" last="He">Hongkun He</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, Pittsburgh</wicri:regionArea>
<placeName>
<settlement type="city">Pittsburgh</settlement>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Zhong, Mingjiang" sort="Zhong, Mingjiang" uniqKey="Zhong M" first="Mingjiang" last="Zhong">Mingjiang Zhong</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, Pittsburgh</wicri:regionArea>
<placeName>
<settlement type="city">Pittsburgh</settlement>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Konkolewicz, Dominik" sort="Konkolewicz, Dominik" uniqKey="Konkolewicz D" first="Dominik" last="Konkolewicz">Dominik Konkolewicz</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, Pittsburgh</wicri:regionArea>
<placeName>
<settlement type="city">Pittsburgh</settlement>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yacatto, Karin" sort="Yacatto, Karin" uniqKey="Yacatto K" first="Karin" last="Yacatto">Karin Yacatto</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Kilimanjaro Energy, Inc., San Francisco, CA 94107</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rappold, Timothy" sort="Rappold, Timothy" uniqKey="Rappold T" first="Timothy" last="Rappold">Timothy Rappold</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Kilimanjaro Energy, Inc., San Francisco, CA 94107</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sugar, Glenn" sort="Sugar, Glenn" uniqKey="Sugar G" first="Glenn" last="Sugar">Glenn Sugar</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Kilimanjaro Energy, Inc., San Francisco, CA 94107</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="David, Nathaniel E" sort="David, Nathaniel E" uniqKey="David N" first="Nathaniel E." last="David">Nathaniel E. David</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Kilimanjaro Energy, Inc., San Francisco, CA 94107</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gelb, Jeff" sort="Gelb, Jeff" uniqKey="Gelb J" first="Jeff" last="Gelb">Jeff Gelb</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Xradia, Inc., Pleasanton, CA 94588</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kotwal, Naomi" sort="Kotwal, Naomi" uniqKey="Kotwal N" first="Naomi" last="Kotwal">Naomi Kotwal</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Xradia, Inc., Pleasanton, CA 94588</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Merkle, Arno" sort="Merkle, Arno" uniqKey="Merkle A" first="Arno" last="Merkle">Arno Merkle</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Xradia, Inc., Pleasanton, CA 94588</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matyjaszewski, Krzysztof" sort="Matyjaszewski, Krzysztof" uniqKey="Matyjaszewski K" first="Krzysztof" last="Matyjaszewski">Krzysztof Matyjaszewski</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, Pittsburgh</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Correspondence address: Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Advanced Functional Materials</title>
<title level="j" type="alt">ADVANCED FUNCTIONAL MATERIALS</title>
<idno type="ISSN">1616-301X</idno>
<idno type="eISSN">1616-3028</idno>
<imprint>
<biblScope unit="vol">23</biblScope>
<biblScope unit="issue">37</biblScope>
<biblScope unit="page" from="4720">4720</biblScope>
<biblScope unit="page" to="4728">4728</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2013-10-04">2013-10-04</date>
</imprint>
<idno type="ISSN">1616-301X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1616-301X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>3dom</term>
<term>Ambient conditions</term>
<term>Ammonium</term>
<term>Aqueous solution</term>
<term>Basic conditions</term>
<term>Capillary force</term>
<term>Chem</term>
<term>Colloidal</term>
<term>Colloidal crystal</term>
<term>Colloidal crystal template</term>
<term>Colloidal crystal templates</term>
<term>Colloidal crystal templating</term>
<term>Colloidal crystals</term>
<term>Crosslinked</term>
<term>Crosslinked polymer networks</term>
<term>Crosslinker</term>
<term>Crosslinkers</term>
<term>Crosslinking</term>
<term>Crystal templating</term>
<term>Crystals templates</term>
<term>Crystals templating</term>
<term>Dicationic</term>
<term>Dicationic crosslinker</term>
<term>Different crosslinking degrees</term>
<term>Different methods</term>
<term>Elemental analysis</term>
<term>Excellion</term>
<term>Excellion membrane</term>
<term>Full paper</term>
<term>Funct</term>
<term>Gmbh</term>
<term>Humidity swing</term>
<term>Hydroxide</term>
<term>Kgaa</term>
<term>Large pores</term>
<term>Macropores</term>
<term>Macroporous</term>
<term>Mater</term>
<term>Mmol</term>
<term>Molar ratio</term>
<term>Mole ratio</term>
<term>Monomer</term>
<term>Overall rate</term>
<term>Pmma</term>
<term>Pmma spheres</term>
<term>Pmvpmacl</term>
<term>Polymer</term>
<term>Pore</term>
<term>Porous materials</term>
<term>Porous structure</term>
<term>Precursor</term>
<term>Quaternary</term>
<term>Quaternary ammonium hydroxide groups</term>
<term>Swing size</term>
<term>Template</term>
<term>Templating</term>
<term>Vbtmacl</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Weinheim</term>
<term>Zhang</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>3dom</term>
<term>Ambient conditions</term>
<term>Ammonium</term>
<term>Aqueous solution</term>
<term>Basic conditions</term>
<term>Capillary force</term>
<term>Chem</term>
<term>Colloidal</term>
<term>Colloidal crystal</term>
<term>Colloidal crystal template</term>
<term>Colloidal crystal templates</term>
<term>Colloidal crystal templating</term>
<term>Colloidal crystals</term>
<term>Crosslinked</term>
<term>Crosslinked polymer networks</term>
<term>Crosslinker</term>
<term>Crosslinkers</term>
<term>Crosslinking</term>
<term>Crystal templating</term>
<term>Crystals templates</term>
<term>Crystals templating</term>
<term>Dicationic</term>
<term>Dicationic crosslinker</term>
<term>Different crosslinking degrees</term>
<term>Different methods</term>
<term>Elemental analysis</term>
<term>Excellion</term>
<term>Excellion membrane</term>
<term>Full paper</term>
<term>Funct</term>
<term>Gmbh</term>
<term>Humidity swing</term>
<term>Hydroxide</term>
<term>Kgaa</term>
<term>Large pores</term>
<term>Macropores</term>
<term>Macroporous</term>
<term>Mater</term>
<term>Mmol</term>
<term>Molar ratio</term>
<term>Mole ratio</term>
<term>Monomer</term>
<term>Overall rate</term>
<term>Pmma</term>
<term>Pmma spheres</term>
<term>Pmvpmacl</term>
<term>Polymer</term>
<term>Pore</term>
<term>Porous materials</term>
<term>Porous structure</term>
<term>Precursor</term>
<term>Quaternary</term>
<term>Quaternary ammonium hydroxide groups</term>
<term>Swing size</term>
<term>Template</term>
<term>Templating</term>
<term>Vbtmacl</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Weinheim</term>
<term>Zhang</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The design and preparation of porous materials with controlled structures and functionalities is crucial to a variety of absorption‐ or separation‐relevant applications, including CO2 capture. Here, novel functional polymeric materials with three‐dimensionally ordered macroporous (3DOM) structures are prepared by using colloidal crystals as templates using relatively simple, rapid, and inexpensive approaches. These ordered structures are used for the reversible CO2 capture from ambient air by humidity swing. Typically, the colloidal crystal template is synthesized from polymer latex particles of poly(methyl methacrylate) (PMMA) or polystyrene (PS). To maintain the functionality of the material, it is important to prevent the porous structure collapsing, which can occur by the hydrolysis of the ester bonds in conventional crosslinkers under basic conditions. This hydrolysis can be prevented by using a water‐soluble crosslinker containing two quaternary ammonium moieties, which can be used to prepare stable porous crosslinked polymers with the monomer (vinylbenzyl)trimethylammonium chloride (VBTMACl) and using a PMMA‐based colloidal crystal template. The hydroxide‐containing monomer and dicationic crosslinker are synthesized from their chloride precursors, avoiding the ion‐exchange step which causes shrinkage of the pores. An analysis of different methods for infiltrating the monomer solution into the colloidal crystal template shows that infiltration using capillary forces leads to fewer defects than infiltration under a partial vacuum. In addition, functional macroporous films with micrometer thickness are prepared from a template of PS‐based colloidal crystals in a thin film. In general, the colloidal crystal templated materials showed improved CO2 absorption/desorption rates and swing sizes compared to a commercially available material with similar functional groups. This work could easily be extended to create a new generation of ordered macroporous polymeric materials with tunable functionalities for other applications.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Pittsburgh</li>
</settlement>
<orgName>
<li>Université Carnegie-Mellon</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="He, Hongkun" sort="He, Hongkun" uniqKey="He H" first="Hongkun" last="He">Hongkun He</name>
</region>
<name sortKey="David, Nathaniel E" sort="David, Nathaniel E" uniqKey="David N" first="Nathaniel E." last="David">Nathaniel E. David</name>
<name sortKey="Gelb, Jeff" sort="Gelb, Jeff" uniqKey="Gelb J" first="Jeff" last="Gelb">Jeff Gelb</name>
<name sortKey="Konkolewicz, Dominik" sort="Konkolewicz, Dominik" uniqKey="Konkolewicz D" first="Dominik" last="Konkolewicz">Dominik Konkolewicz</name>
<name sortKey="Kotwal, Naomi" sort="Kotwal, Naomi" uniqKey="Kotwal N" first="Naomi" last="Kotwal">Naomi Kotwal</name>
<name sortKey="Matyjaszewski, Krzysztof" sort="Matyjaszewski, Krzysztof" uniqKey="Matyjaszewski K" first="Krzysztof" last="Matyjaszewski">Krzysztof Matyjaszewski</name>
<name sortKey="Matyjaszewski, Krzysztof" sort="Matyjaszewski, Krzysztof" uniqKey="Matyjaszewski K" first="Krzysztof" last="Matyjaszewski">Krzysztof Matyjaszewski</name>
<name sortKey="Matyjaszewski, Krzysztof" sort="Matyjaszewski, Krzysztof" uniqKey="Matyjaszewski K" first="Krzysztof" last="Matyjaszewski">Krzysztof Matyjaszewski</name>
<name sortKey="Merkle, Arno" sort="Merkle, Arno" uniqKey="Merkle A" first="Arno" last="Merkle">Arno Merkle</name>
<name sortKey="Rappold, Timothy" sort="Rappold, Timothy" uniqKey="Rappold T" first="Timothy" last="Rappold">Timothy Rappold</name>
<name sortKey="Sugar, Glenn" sort="Sugar, Glenn" uniqKey="Sugar G" first="Glenn" last="Sugar">Glenn Sugar</name>
<name sortKey="Yacatto, Karin" sort="Yacatto, Karin" uniqKey="Yacatto K" first="Karin" last="Yacatto">Karin Yacatto</name>
<name sortKey="Zhong, Mingjiang" sort="Zhong, Mingjiang" uniqKey="Zhong M" first="Mingjiang" last="Zhong">Mingjiang Zhong</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005C17 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005C17 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:0D1D0896344117E278B3B100DE8B1A14C037C97A
   |texte=   Three‐Dimensionally Ordered Macroporous Polymeric Materials by Colloidal Crystal Templating for Reversible CO2 Capture
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021